Introduction to PROCESS CAPABILITY

Ram Nyshadham

AAPS, New Orleans, LA November 17, 1999

CONTENTS

- Rationale
- Process Capability Overview
 - Philosophy
 - Literature Review
 - Assumptions
 - Process Capability Indices
 - Example
- Summary

RATIONALE

- Why do Validation ?
- Why apply Process Capability to Validation ?

Why Do Validation?

Why ?

- Common sense and good science requires it.
- cGMP mandates it !

How ?

- Qualify facility and equipment train.
- Establish extremes and limits of manufacturing process in development through scale-up.
- Process validation batches on target.
- If done right, should be the easiest exercise ?!

Why Process Capability?

Provides a means for common and easily understood language for quantifying the performance of manufacturing process.

Provides a measure for "High Degree of Assurance", a key requirement for process validation.

PROCESS CAPABILITY OVERVIEW

- Philosophy
- Literature Review
- Assumptions
- Process Capability Indices
- Example

Philosophy

- Quantification of process location (mean) and variation(standard deviation) is central to product quality.
- Process capability provides a means to compute unitless indices (PCIs) using process location and variation relative to pre-established specifications (target & limits).
- Process capability is the measured reproducibility of the manufacturing process.

Non-Pharmaceutical Literature

- J.M. Juran (1974). Quality Control Hand Book, 3rd edition. McGraw-Hill, New York, NY.
- V.E. Kane (1986). "Process Capability Indices." Journal of Quality Technology, 18, pp 41-52.
- Journal of Quality Technology
- Quality Progress
- B.H. Gunter (1989). "The Use and Abuse of C_{pk}, part 2 and 3. Quality Progress, March and May, 1989.

Pharmaceutical Literature

- J.A. Daley. "A Practical Guide to Sample Selection for C_{pk} Determinations". Journal of Validation Technology, Volume 2, Number 1, pp 25-28.
- L. Torbeck. "Validation and Process Capability", Pharmaceutical Technology, June 1998, pp 66-76.
- R. Nash. Pharmaceutical Process Validation, 2 nd edition, Marcel Dekker, Volume 57.

Assumptions

- The process is in a state of statistical control.
- The data are normally distributed.
- The data collected are collected from independent random samples.
- The data are truly representative of the process.

Process Capability Indices (PCI)

First Generation PCI - Focus of this session

$$\rightarrow$$
 C_p , C_{pu} , C_{pl} , k , C_{pk}

Second Generation PCI:

Third Generation PCI

Robust PCI:

Summary of Capability Indices

Index	Term	Equation	Usage
C_p	Potential Capability	<u>USL - LSL</u> 6 o	process potential for two- sided specification limits
СРИ	Upper Capability Index	<u>USL - μ</u> 3σ	process performance relative to upper specification limit
CPL	Lower Capability Index	<u>μ - LSL</u> 3 σ	_process performance relative to lower specification limit
k	Non-centering Correction	<u>2 m - μ </u> USL - LSL	_deviation of process mean from midpoint (m) of specification limits
C _{pk}	Demonstrated Excellence	Min { CPL, CPU} = C _p (1 - k)	process performance for two- sided specification limits

Interpretation

Potential Capability - C_p (V. Kane)

Using a \pm 3 σ spread, for a process with normal distribution:

- C_p=1.0 ⇒0.27% of parts are beyond specification limits.
- C_p=1.33 ⇒0.007% of parts are beyond specification limits.

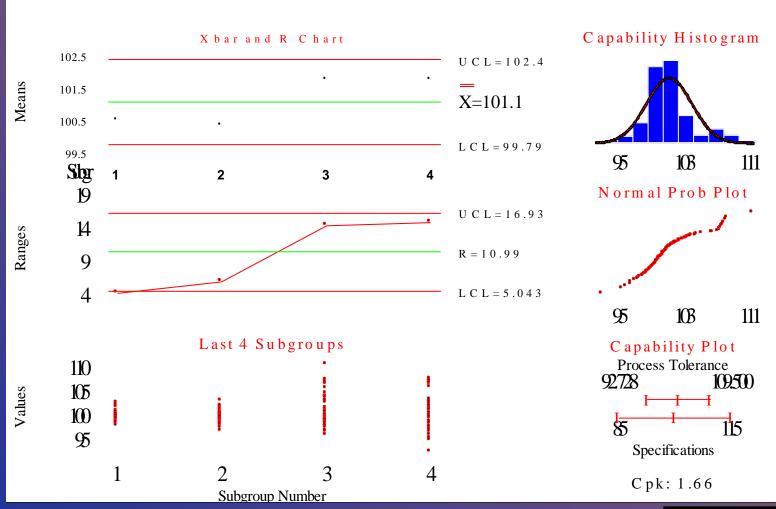
Interpretation (continued)

Demonstrated Excellence - C_{pk} (L. Torbeck) For Assuming normal distribution:

	Units Outside of Specifications		
C_{pk}	(Billion)	(Percentage)	
0.5	70,000,000	7	
1.0	1,300,000	0.13	
1.33	30,000	0.003	
1.67	1000	0.0001	
2.0	1	0.0000001	

- C_{pk} for potency should be targeted at 1.33.
- To consistently achieve a C_{pk} of 1.33 during routine production, C_{pk} > 1.33 should be obtained in validation.

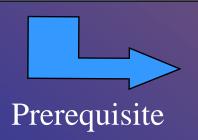
Example


- OTC Product; B.S: 500.0 kg
- Drug Loading: 4.65%; Compression Stage
- Collect random sample of tablets representing the entire compression run
- Test 5 tablets/sample; 40 tablets/batch; 4 batches (overall n=160)
- Check Process Capability for 85-115 % CU limits

Example (continued)

Content Uniformity - Compression Run

Example (continued)


Content Uniformity - Compression Run

Lower Spec Upper Spec 85 95 105 115 Active 100.000 Cp 1.79 Targ Mean 101.114 %>USLExp 0.00 PPM>USL Exp 0 **CPU** 1.66 USL 115.000 Mean+3s 109.500 0.00 Obs Obs 0 CPL 1.92 LSL PPM/LSLExp 85.000 Mean-3s 92.728 %<LSLExp 0.00 Cpk 1.66 k 0.074 2.795 Obs 0.00 Obs 0 S Cpm 1.64 160.000

SUMMARY

Knowledge of Pharmaceutics, Manufacturing Processes, etc.

Apply Process Capability

Process Validation

